Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU)
نویسندگان
چکیده
The mitochondrial calcium uniporter (MCU) gene codifies for the inner mitochondrial membrane (IMM) channel responsible for mitochondrial Ca(2 +) uptake. Cytosolic Ca(2 +) transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca(2 +) regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca(2 +) transients elicit large increases in the [Ca(2 +)] of the mitochondrial matrix ([Ca(2 +)]mt). Mitochondrial Ca(2 +) uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca(2 +) uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca(2 +) uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection). Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/) (GSE60931).
منابع مشابه
Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics
Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations o...
متن کاملTissue-Specific Mitochondrial Decoding of Cytoplasmic Ca2+ Signals Is Controlled by the Stoichiometry of MICU1/2 and MCU
Mitochondrial Ca2+ uptake through the Ca2+ uniporter supports cell functions, including oxidative metabolism, while meeting tissue-specific calcium signaling patterns and energy needs. The molecular mechanisms underlying tissue-specific control of the uniporter are unknown. Here, we investigated a possible role for tissue-specific stoichiometry between the Ca2+-sensing regulators (MICUs) and po...
متن کاملStructure and function of the N-terminal domain of the human mitochondrial calcium uniporter
The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution...
متن کاملReconstitution of the mitochondrial calcium uniporter in yeast.
The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU r...
متن کاملInhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1 −/− zebrafish
Mutations in PTEN-induced putative kinase 1 (PINK1) are a cause of early onset Parkinson's disease (PD). Loss of PINK1 function causes dysregulation of mitochondrial calcium homeostasis, resulting in mitochondrial dysfunction and neuronal cell death. We report that both genetic and pharmacological inactivation of the mitochondrial calcium uniporter (MCU), located in the inner mitochondrial memb...
متن کامل